Part Number Hot Search : 
O3300A 46R01 CTP4407 2KBP0056 SA15Y P80NE0 SC518 MR82C
Product Description
Full Text Search
 

To Download TDA9556 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TDA9556
7.5 NS TRIPLE-CHANNEL HIGH VOLTAGE VIDEO AMPLIFIER
PRODUCT PREVIEW
FEATURES
s s s
s s s s s s s
Triple-channel video amplifier Pinning for easy PCB layout Supports DC coupling (optimum cost saving) and AC coupling applications. Built-in Voltage Gain: 19.3 (Typ.) Rise and Fall Times: 7.5ns (Typ.) Bandwidth: 50MHz (Typ.) Very low stand-by power consumption 80V Output dynamic range Supply voltage: 110V Perfectly matched with the TDA9210 preamplifier
CLIPWATT 11 (Plastic Package) ORDER CODE: TDA9556
DESCRIPTION
The TDA9556 is a triple-channel video amplifier designed in BCD technology (Bipolar/CMOS/ DMOS) able to drive the 3 cathodes of a CRT monitor. Perfectly matched with the ST Preamplifier TDA9210, it provides a high performance, and very cost effective DC coupling system.
PIN CONNECTIONS
11 10 9 8 7 6 5 4 3 2 1 OUT1 OUT2 OUT3 GNDP VDD GNDS GNDA IN3 VCC IN2 IN1
Version 2.0
October 2000 1/16
1
Table of Contents
1 2 3 4 5 6 BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THERMAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . THEORY OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 - General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 4 4 5 7 7
6.2 - How to choose the high supply voltage value (VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6.3 - Amplifier gain and cut-off adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 7 ARCING PROTECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8 VIDEO RESPONSE OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 8.1 Supply decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 8.2 - Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 8.3 - Network adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 POWER DISSIPATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 TYPICAL PERFORMANCE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 11 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2
2/16
2
TDA9556
1 BLOCK DIAGRAM
OUT1 GNDP 8 11 OUT2 10 OUT3 9
TDA9556
VDD VDD 7 GNDP VDD GNDP
VCC 3
VREF
6 GNDS
5 IN1 GNDA
1
2 IN2
4 IN3
2 PIN CONNECTIONS
Pin 1 2 3 4 5 6 7 8 9 10 11 Name IN1 IN2 VCC IN3 GNDA GNDS VDD GNDP OUT3 OUT2 OUT1 Video Input-channel 1 Video Input-channel 2 Low Supply Voltage Video Input-channel 3 Ground Analogic (signal) Ground Substrate High Supply Voltage Ground Power Output-channel 3 Output-channel 2 Output-channel 1 Function
3/16
3
TDA9556
3 ABSOLUTE MAXIMUM RATINGS
Symbol VDD VCC VESD IOD I OG VIN Max VIN Min TJ TSTG High supply voltage Low supply voltage ESD susceptibility Human Body Model (100pF discharged through 1.5K) EIAJ norm (200pF discharged through 0) Output source current (pulsed < 50s) Output sink current (pulsed < 50s) Maximum Input Voltage Minimum Input Voltage Junction Temperature Storage Temperature Parameter Value 120 17 2 300 80 80 15 - 0.5 150 -20 + 150 Unit V V kV V mA mA V V C C
4 THERMAL DATA
Symbol Rth (j-c) R th (j-a) Parameter Junction-Case Thermal Resistance (Max.) Junction-Ambient Thermal Resistance (Typ.) Value 3 35 Unit C/W C/W
4/16
3
TDA9556
5 ELECTRICAL CHARACTERISTICS
Symbol
Parameter
Test Conditions
Min.
Typ 110 12 25 60 60 0.5 15 5 2
VDD - 6.5
Max 115 15
Unit V V mA A mA % mV/C mV/C k V V
SUPPLY parameters (VCC = 12V, VDD = 110V, Tamb = 25 C, unless otherwise specified) High supply voltage 20 VDD VCC IDD IDDS ICC dVOUT/dVDD dV OUT/dT dV OUT/dT R IN V SATH VSATL VG LE VREF Low supply voltage V DD supply current V DD stand-by supply current V CC supply current High Voltage supply rejection Output Voltage drift versus temperature Output voltage matching versus temperature (Note 2) Video Input Resistor Output Saturation Voltage to Supply Output Saturation Voltage to GND Video Gain Linearity Error Internal Voltage Reference VOUT = 50V VCC : switched off (<1.5V) VOUT: low (Note 1) VOUT = 50V VOUT = 50V VOUT = 80V VOUT = 80V VOUT = 50V I0 =-60mA (Note 3) I0 =60mA (Note 3) VOUT = 50V 17STATIC parameters (VCC = 12V, VDD = 110V, Tamb = 25 C)
11 19.3 5 5.5 8
% V
Note 1: The TDA 9556 goes into stand-by mode when Vcc is switched off (<1.5V). In stand-by mode, Vout is set to low level. Note 2: Matching measured between each channel. Note 3: Pulsed current width < 50s
5/16
3
TDA9556
ELECTRICAL CHARACTERISTICS (continued)
Symbol OS1 OS2 VG BW tR tF tSET CTL CTH
Parameter Overshoot, White to Black transition Overshoot, Black to White transition Low frequency gain matching (Note 4) Bandwidth at -3dB Rise time Fall time 2.5% Settling time Low frequency Crosstalk High frequency Crosstalk
Test Conditions
Min.
Typ 5 1
Max
Unit % %
DYNAMIC parameters (see Figure 1)
VDC = 50V, f=1MHz VDC=50V, V=20V PP VDC=50V, V=40V PP VDC=50V, V=40V PP VDC=50V, V=40V PP VDC=50V,V=20VPP f = 1 MHz VDC=50V,V=20VPP f = 20MHz 50 7.2 7.9 15 50 32
5
% MHz ns ns ns dB dB
Note 4: Matching measured between each channel.
Figure 1. AC test circuit
12V VCC 75
1
110V VDD
VDC V
TDA9556
3
7
OUT
11
VREF
RP = 200
IN
8
CL=8pF GND
6/16
3
TDA9556
6 THEORY OF OPERATION
6.1 - General The TDA9556 is a three-channel video amplifier supplied by a low supply voltage: VCC (typ.12V) and a high supply voltage: VDD (up to 115V). The high values of VDD supplying the amplifier output stage allow direct control of the CRT cathodes (DC coupling mode). In DC coupling mode, the application schematic is very simple and only a few external components are needed to drive the cathodes. In particular, Figure 2. Output signal, level adjustments
V DD 15V (A) Top Non-Lin ear Region (B) Cut-off Adjust. (25V Typ.) (C) Brightness Adjust. (10V Typ.) Linear region Blanking pulse (D) Contrast Adjust. (40V Typ.) Video Signal
there is no need of the DC-restore circuitry which is used in classical AC coupling applications. The output voltage range is wide enough (Figure 2) to provide simultaneously : - Cut-off adjustment (typ. 25V) - Video contrast (typ. up to 40V), - Brightness (with the remaining voltage range). In normal operation, the output video signal must remain inside the linear region whatever the cutoff / brightness / contrast adjustment is.
17V GND
(E) Bottom Non-Linear Region
6.2 - How to choose the high supply voltage value (VDD) The VDD high supply voltage must be chosen carefully. It must be high enough to provide the necessary video adjustment but set to minimum value to avoid unecessary power dissipation. Example: The following example shows how the optimum VDD voltage value is determined: - Cut-off adjustment range (B) : 25V - Max contrast (D) : 40V Case 1: 10V Brightness (C) adjusted by the preamplifier : VDD = A + B + C + D + E VDD = 15V + 25V + 10V + 40V + 17V = 107V Case 2: 10V Brightness (C) adjusted by the G1 anode: VDD = A + B + D + E VDD = 15V + 25V + 40V + 17V = 97V
7/16
3
TDA9556
6.3 - Amplifier gain and cut-off adjustment A very simplified schematic of each TDA9556 channel is shown in Figure 3. The feedback net of each channel is integrated with a built-in voltage gain of 19.3 (40k/2k). Figure 3. Simplified schematic of one channel
VDD 40k 2k IN VREF
The output voltage VOUT is given by the following formula: VOUT = (VG+1) x VREF - (VG x VIN) for VG = 19.3 and VREF = 5.5V, we have VOUT = 111.6 - 19.3 x VIN
+
OUT
GND
7 ARCING PROTECTION
As the amplifier outputs are connected to the CRT cathodes, special attention must be given to portect them against possible arcing inside the CRT. Protection must be considered when starting the design of the video CRT board. It should always be implemented before starting to adjust the dynamic video response of the system. Figure 4. Arcing protection network (one channel)
R19 33 C24 4.7F/150V D12 FDH400 R10 TDA9556 OUT 150/0.5W L1 0.39H R11 150/0.5W F1 Spark gap R29 10 (*): To be connected as close as possible to the device. High Voltage (90-110V)
The arcing network that we recommend (see Figure 4) provides efficient protection without deteriorating the amplifier video performances. The total resistance value between the amplifier and the CRT cathode (R10+R11) should not be less than 300 . Spark gap diodes are strongly recommended for protection against arcing.
VDD
C12 (*) 100nF/250V
C18 100nF
GND
8/16
TDA9556
8 VIDEO RESPONSE OPTIMIZATION
The dynamic video response is optimized by carefully designing the supply decoupling of the video board (see Section 8.1), the tracks (see Section 8.2), then by adjusting the input/output component network (see Section 8.3). For dynamic measurements such as rise/fall time and bandwidth, a 8pF load is used (total load including the parasitic capacitance of the PC board and CRT Socket).
Figure 5. Video response optimization for one channel
C11 4.7F VCC
C10(*) 100nF
C12(*) 100nF VDD
C24 4.7F
R20 TDA9210 15/50 IN VREF TDA9556 GNDS (*): To be connected as close as possible to the device GND +
CRT R10 OUT 150 L1 0.39H R11 150
8.1 Supply decoupling The decoupling of VCC and VDD through good quality HF capacitors (respectively C10 and C12) close to the device is necessary to improve the dynamic performance of the video signal. 8.2 - Tracks Careful attention has to be given to the three output channels of the amplifier. - Capacitor: The parasitic capacitive load on the amplifier outputs must be as small as possible. Figure 11 clearly shows the deterioration of the tR/tF when the capacitive load increases. Reducing this capacitive load is achieved moving away the output tracks from the other tracks (especially ground) and by using thin tracks (<0.5mm), see Figure 13. - Cross talk: Output and input tracks must be set apart. The TDA9556 pin-out allows the easy separation of input and output tracks on opposite sides of the amplifier (see Figure 13).
- Length: Connection between amplifier output and cathode must be as short and direct as possible. 8.3 - Network adjustment Video response is always a compromise between several parameters. An improvement of the rise/ fall time leads to a deterioration of the overshoot. The recommended way to optimize the video response is: 1 To set R10+R11 for arcing protection (min. 300 ) 2. To adjust R20 and R10+R11. Increasing their value increases the tR/tF values and decrease the overshoot 3. To adjust L1 Increasing L1 speeds up the device and increases the overshoot. We recommend our customers to use the schematic shown on Figure 5 as a starting point for the video board and then to apply the optimization they need.
9/16
TDA9556
9 POWER DISSIPATION
The total power dissipation is the sum of the static DC and the dynamic dissipation: PTOT = PSTAT + PDYN. The static DC power dissipation is approximately: PSTAT = VDD x IDD + VCC x ICC The dynamic dissipation is, in the worst case (1 pixel On/ 1 pixel Off pattern): PDYN = 3 VDD x CL x VOUT(PP) x f x K where f is the video frequency and K the ratio between the active line and the total horizontal line duration. Example: for VDD = 110V, VCC = 12V, IDD = 25mA, ICC = 60mA, VOUT = 40 VPP, f = 40MHz, CL = 8pF and K = 0.72. We have: PSTAT = 3.47W, PDYN = 3.04W Therefore: PTOT = 6.51W.
Note 4: This worst thermal case must only be considered for TJmax calculation. Nevertheless, during the average life of the circuit, the conditions are closer to the white picture conditions.
10/16
TDA9556
10 TYPICAL PERFORMANCE CHARACTERISTICS
VDD=110V, VCC=12V, CL=8pF, RP=300, V=40VPP, unless otherwise specified - see Figure 1 Figure 6. TDA9556 pulse response Figure 7. VOUT versus VIN
120 100 80
Vout (V)
60 40 20 0 0 1 2 3 4 5 6
Vin (V)
Figure 8. Power dissipation versus frequency
12 Total Power Dissipation (W)
Figure 9. Speed versus temperature
8.5
10 8
8.3 8.1 7.9 Speed (ns) 7.7 7.5 7.3 7.1 6.9 6.7
10 20 30 40 Square Wave Frequency (MHz) (72% Active Time) 50
6 4 2 0
tf
tr
6.5 60 70 80 90 100 110 Cas e Temperature (C) 120
Figure 10. Speed versus offset
10 9.5 9 8.5 Speed (ns)
Figure 11. Speed versus load capacitance
10 9.5 9 Speed (ns) Rp = 100 Ohms
8 7.5 7 6.5 6 5.5 5 40 45
tf
8.5 8 7.5 7 6.5 6 8 12
tf
tr
tr
50 55 60 Offset Voltage (Vdc)
65
70
16
20
Load Capacitance (MHz)
11/16
TDA9556
Figure 12. TDA9210 - TDA9556 - STV9935 Demonstration Board: Silk Screen and Trace
Figure 13. Amplifier and Preamplifier Outputs. Trace Routing (detail)
Note that the amplifier outputs are well separated from the ground area while the amplifier inputs are surrounding by the ground
12/16
A
C
B
D
E
R2 0 100R R1 C1
1 10 V
Hs Out
100R
R18 100R
Vs Out 5V C26
C18
BLK 8V 12V 10nF / 250V R11 C8 C7 110V 3 7 D2 FDH40 0 11 0.22uH 110V U2 D7 L2 R14 180R 0.22uH L1 R6 1 80R
R7 180R
R25 100R 100pF R26 C10 4.7uF / 150V 39R
4
5V
R4
100pF U1 47uF 100nF 2R7
4
J1 1N4148
R2 15R
D1 2R 7 C3 1 IN1 Vcc Vdd ABL IN2 R29 4 GNDL IN3 R30
100nF
5V
Red
100nF BLK HS OUT1 In 1 Out 1 VCCP C24 4.7nF R13 2 In 2 Out 2 10 33R OUT2 GNDP OUT3 5V 13 R24 4 In 3 Out 3 GNDS GNDP GNDA 9 R21 2K7 SCL 5 6 8 10 OSD3 C13 5V
100pF TDA9210
5V
20 19 C23 4.7nF R9 1 33R RK 18 17 1K6 16 C5 15 C25 4.7nF R17 R1 9 2K7 L3 0.22uH 1K6 33R 1K6 14
R3 1N4148 C4 1N4148 R8 15R 3
C9
5V
D3
D4
75R 100nF 100nF
2
Green
D5 1N4148
Blue D6 1N4148 C6 5 6 GNDA VCCA OSD1 OSD2 FBLK 11 SCL 12 SCA 7 8 16 9 Iref Filter AVdd J10 R32 1K SDA R33 1K R34 1K 100pF 12V
C17 47uF
R5
12 11 10 9 8 7 6 5 4 3 2 1 100nF C22 100nF R12 15 R
75R
TDA9556
Video D8 1N4148 R16 2R7 5V
FDH40 0 R1 5 180R 110V D9 FDH400
GK
3
3
R10 75R
C30
C29
Hfly
100pF
100pF U3 AGND Iref Filter AVdd FBlk Bout Gout C12 I2C J9 1 2
C16 47uF
11 0V 5V
R22 180R
R23
180R
BK
R42 15 14 13 12 11 10 9 L4 1uH 100nF C2
SDA
1
1K
SDA
SCL
2
D10
R35 100R
SCL
3
5V1
Vsync
R41 100R
4
Hfly
BK R28 10R Heater 12 GND J5 11 B
10
5V
L5
1uH
5
DVdd
C28 100nF
2
SDA
SCL
6
DVss
7 Rout
NC
1 2 3 4
H1 H2 R GND_CR T J7 G2 9 8 7
C14 100nF
F1
2
C31
C33
8
100pF
1 10V
100pF
OVss
STV9935 8V
RK J8 C19 C21 100nF / 250V GND G1 G 4. 7nF / 2KV
C35
R46
Figure 14. TDA9535/9536 - TDA9210 Demonstration Board Schematic
STO2
G2
F2
GK F4
Iref J16
R45
C15 47uF
Filter J17 Power
C34
R44
1 2 3 4 5
Heater G1 BLK Vs Out G1
1
R27
150R 5 C20
6
C32
4.7nF / 1kV
1
1
R43
1 2 3 4 5 6 7 Supply
Title Hs Out Hfly Size A4
AVdd
CRT31 with TDA9210 + TDA9535/36
Do cument Number Version 1.4 Date: Thursday, Sep tember 14, 2000 Sheet
C
Rev 1
D E
of
1
TDA9556
A
B
13/16
TDA9556
11 PACKAGE MECHANICAL DATA
11 PIN - CLIPWATT
V
V1 H3 A C V2 V1 V1 V1 L2 L1 L V R3 D R1 R L3 R2 S H2 H1
R3
R3
B lead#1 G F G1
E
M1
M
G2
Table 1
Dimensions A B C D E F G G1 H1 H2 H3 L L1 L2 L3 M M1 R 18.55 19.90 17.70 14.35 10.90 5.40 2.34 2.34 1.45 1.30 0.49 0.78 1.60 16.90 Millimeters Min. 2.95 0.95 Typ. 3.00 1.00 0.15 1.50 0.515 0.80 1.70 17.00 12.00 18.60 20.00 17.90 14.55 11.00 5.50 2.54 2.54 18.65 20.10 18.10 14.65 11.10 5.60 2.74 2.74 0.730 0.783 0.696 0.564 0.429 0.212 0.092 0.092 0.057 1.70 0.55 0.88 1.80 17.10 0.051 0.019 0.031 0.063 0.665 Max. 3.05 1.05 Min. 0.116 0.037 Inches Typ. 0.118 0.039 0.006 0.059 0.020 0.033 0.067 0.669 0.472 0.732 0.787 0.704 0.572 0.433 0.216 0.100 0.100 0.734 0.791 (5) 0.712 0.576 0.437(5) 0.220 0.107 0.107 0.066 0.021 0.034 0.071 0.673 Max. 0.120 0.041
14/16
TDA9556
Table 1
Dimensions R1 R2 R3 S V V1 V2 0.65 Millimeters Min. 3.20 Typ. 3.30 0.30 0.50 0.70 10deg. 5deg. 75deg. 0.75 0.025 Max. 3.40 Min. 0.126 Inches Typ. 0.130 0.012 0.019 0.027 10deg. 5deg. 75deg. 0.029 Max. 0.134
Note 5: "H3 and L2" do not include mold flash or protrusions Mold flash or protrusions shall not exceed 0.15mm per side.
15/16
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this public ation are subject to change witho ut notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics. (c) 2000 STMicroelectronics - All Rights Reserved Purchase of I2C Components of STMicroelectronics, conveys a license under the Philip s I2C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to the I2C Standard Specifications as defined by Philip s. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. http://www .st.com
16/16
4


▲Up To Search▲   

 
Price & Availability of TDA9556

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X